Scaling Neural Program Synthesis with Distribution-based Search

Nathanaël Fijalkow ^{1,2}	Guillaume Lagarde ¹	Th Matr	iéo icon ¹	Kevin	Ellis ³	$\begin{array}{c} {\sf Pierre} \\ {\sf Ohlmann}^4 \end{array}$	Akarsh Potta 5
¹ CNRS, LaBRI and Université de Bordeaux France	² The Alan Turing Institute of data science, United Kingdom		³ Cornell University, United States			rsity of Paris, France	⁵ Indian Institute of Technology Bombay, India

February, 2022

1

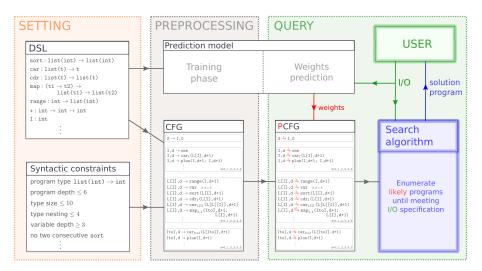
• A theoretical framework called distribution-based search for evaluating and comparing search algorithms in the context of machine-learned predictions.

- A theoretical framework called distribution-based search for evaluating and comparing search algorithms in the context of machine-learned predictions.
- Two new search algorithms: HEAP SEARCH, an enumerative method, and SQRT SAMPLING, a probabilistic method. We prove a number of theoretical results about them, in particular that they are both loss optimal.

- A theoretical framework called distribution-based search for evaluating and comparing search algorithms in the context of machine-learned predictions.
- Two new search algorithms: HEAP SEARCH, an enumerative method, and SQRT SAMPLING, a probabilistic method. We prove a number of theoretical results about them, in particular that they are both loss optimal.
- A method for running any search algorithm across parallel computing environments.

- A theoretical framework called distribution-based search for evaluating and comparing search algorithms in the context of machine-learned predictions.
- Two new search algorithms: HEAP SEARCH, an enumerative method, and SQRT SAMPLING, a probabilistic method. We prove a number of theoretical results about them, in particular that they are both loss optimal.
- A method for running any search algorithm across parallel computing environments.

What is f?


What is f?

$$f$$
 : list(int) \rightarrow list(int)

What is f?

f : list(int)
$$\rightarrow$$
 list(int)
f var0 = map (λ x. mod x 7) (map (+ 3) var0)

N. Fijalkow, G. Lagarde, *T. Matricon et al.* Scaling Neural Program Synthesis with Distribution-based Search 4

Pipeline for neural predictions for syntax guided program synthesis.

NN predicts a PCFG \rightarrow induces a distribution $\mathcal D$ over programs

NN predicts a PCFG \rightarrow induces a distribution $\mathcal D$ over programs

We look for a program P that meets IO specification The predictions are given by the prior distribution D NN predicts a PCFG \rightarrow induces a distribution $\mathcal D$ over programs

We look for a program P that meets IO specification The predictions are given by the prior distribution D

Goal: find P as quickly as possible

loss of (A, D) = the expectation of the number of tries to find the program sampled from the prior distribution

loss of (A, D) = the expectation of the number of tries to find the program sampled from the prior distribution

 A^* is 'loss optimal' if it generates each program **exactly once** and in **non increasing order** of probability.

loss of (A, D) = the expectation of the number of tries to find the program sampled from the prior distribution

 A^* is 'loss optimal' if it generates each program **exactly once** and in **non increasing order** of probability.

Trade-off: Quality vs Quantity

7

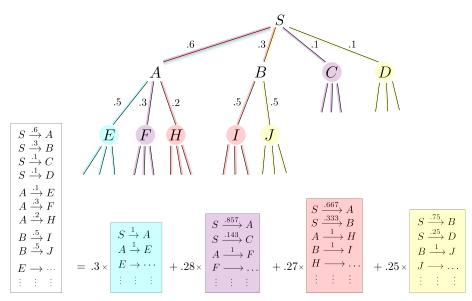
- A theoretical framework called distribution-based search for evaluating and comparing search algorithms in the context of machine-learned predictions.
- Two new search algorithms: Heap Search, an enumerative method, and SQRT Sampling, a probabilistic method. We prove a number of theoretical results about them, in particular that they are both loss optimal.
- A method for running any search algorithm across parallel computing environments.

Theorem

The HEAP SEARCH algorithm is loss optimal: it enumerates every program exactly once and in non-increasing order of probabilities.

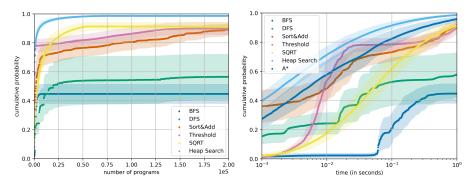
It uses a data structure made of heaps and hashing tables to efficiently enumerate programs.

Sampling Algorithms: may generate a program mutiple times but do not require memory.

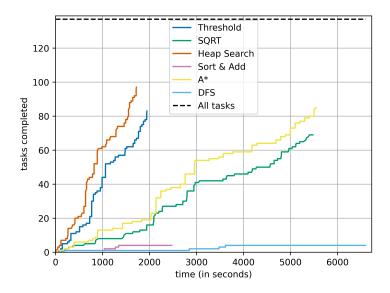

Sampling Algorithms: may generate a program mutiple times but do not require memory.

Theorem

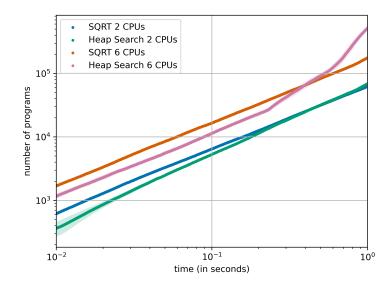
The ${\rm SQRT}~{\rm SAMPLING}$ algorithm is loss optimal among sampling algorithms.


${\rm SQRT}~{\rm SAMPLING}$ samples program from the square root distribution of the prior distribution ${\cal D}.$

- A theoretical framework called distribution-based search for evaluating and comparing search algorithms in the context of machine-learned predictions.
- Two new search algorithms: HEAP SEARCH, an enumerative method, and SQRT SAMPLING, a probabilistic method. We prove a number of theoretical results about them, in particular that they are both loss optimal.
- A method for running any search algorithm across parallel computing environments.


The grammar splitter: a balanced partition with imbalance $\alpha = \frac{.3}{.25} = 1.2$.

Experiments



Cumulative probability against number of program output

Cumulative probability against time in log-scale

Comparing all search algorithms on the DreamCoder reduced dataset with machine-learned PCFGs

Parallel implementations of ${\rm HEAP}\ {\rm SEARCH}$ and ${\rm SQRT}\ {\rm SAMPLING}$ using the grammar splitter

- A theoretical framework called distribution-based search for evaluating and comparing search algorithms in the context of machine-learned predictions.
- Two new search algorithms: HEAP SEARCH, an enumerative method, and SQRT SAMPLING, a probabilistic method. We prove a number of theoretical results about them, in particular that they are both loss optimal.
- A method for running any search algorithm across parallel computing environments.

Code: github.com/nathanael-fijalkow/DeepSynth